Linkless and Flat Embeddings in 3-Space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linkless and Flat Embeddings in 3-space in Quadratic Time

We consider embeddings of graphs in the 3-space R (all embeddings inthis paper are assumed to be piecewise linear). An embbeding of a graph in R3 is linkless if every pair of disjoint cycles forms a trivial link (in the senseof knot theory), i.e., each of the two cycles (in R) can be embedded in aclosed topological 2-disk disjoint from the other cycle. Robertson, Seymour and...

متن کامل

Linkless Embeddings of Graphs in 3-space

We announce results about flat (linkless) embeddings of graphs in 3space. A piecewise-linear embedding of a graph in 3-space is called flat if every circuit of the graph bounds a disk disjoint from the rest of the graph. We have shown: (i) An embedding is flat if and only if the fundamental group of the complement in 3-space of the embedding of every subgraph is free. (ii) If two flat embedding...

متن کامل

Equivalence of Hawking and Unruh Temperatures Through Flat Space Embeddings

We present a unified description of temperature in spaces with either “true” or “accelerated observer” horizons: In their (higher dimensional) global embedding Minkowski geometries, the relevant detectors have constant accelerations aG, hence they measure the temperatures aG/2π associated with their Rindler horizons there. As one example of this equivalence, we obtain the temperature of Schwarz...

متن کامل

Flat surfaces in the hyperbolic 3-space

In this paper we give a conformal representation of flat surfaces in the hyperbolic 3space using the complex structure induced by its second fundamental form. We also study some examples and the behaviour at infinity of complete flat ends. Mathematics Subject Classification (1991): 53A35, 53C42

متن کامل

Primitive Spatial Graphs and Graph Minors

Robertson, Seymour and Thomas characterized linkless embeddings of graphs by flat embeddings, and determined the obstruction set for linkless embeddings. In this paper, we extend flat embeddings to “primitive embeddings” as linkless embeddings to knotless embeddings. Although the obstruction set for knotless embeddings has not been determined, fundamental theorems and conjectures are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2012

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-012-9413-9